module NMatrix::ATLAS::LAPACK
Public Class Methods
Call any of the clapack_xgetrf functions as directly as possible.
The ::clapack_getrf functions (dgetrf, sgetrf, cgetrf, and zgetrf) compute an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges.
The factorization has the form:
A = P * L * U
where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).
This is the right-looking level 3 BLAS version of the algorithm.
Arguments¶ ↑
See: www.netlib.org/lapack/double/dgetrf.f (You don't need argument 5; this is the value returned by this function.)
You probably don't want to call this function. Instead, why don't you try ::clapack_getrf, which is more flexible with its arguments?
This function does almost no type checking. Seriously, be really careful when you call it! There's no exception handling, so you can easily crash Ruby!
Returns an array giving the pivot indices (normally these are argument #5).
static VALUE nm_atlas_clapack_getrf(VALUE self, VALUE order, VALUE m, VALUE n, VALUE a, VALUE lda) { static int (*ttable[nm::NUM_DTYPES])(const enum CBLAS_ORDER, const int m, const int n, void* a, const int lda, int* ipiv) = { NULL, NULL, NULL, NULL, NULL, // integers not allowed due to division nm::math::atlas::clapack_getrf<float>, nm::math::atlas::clapack_getrf<double>, #if defined (HAVE_CLAPACK_H) || defined (HAVE_ATLAS_CLAPACK_H) clapack_cgetrf, clapack_zgetrf, // call directly, same function signature! #else // Especially important for Mac OS, which doesn't seem to include the ATLAS clapack interface. nm::math::atlas::clapack_getrf<nm::Complex64>, nm::math::atlas::clapack_getrf<nm::Complex128>, #endif nm::math::atlas::clapack_getrf<nm::RubyObject> }; int M = FIX2INT(m), N = FIX2INT(n); // Allocate the pivot index array, which is of size MIN(M, N). size_t ipiv_size = std::min(M,N); int* ipiv = NM_ALLOCA_N(int, ipiv_size); if (!ttable[NM_DTYPE(a)]) { rb_raise(nm_eDataTypeError, "this matrix operation undefined for integer matrices"); } else { // Call either our version of getrf or the LAPACK version. ttable[NM_DTYPE(a)](blas_order_sym(order), M, N, NM_STORAGE_DENSE(a)->elements, FIX2INT(lda), ipiv); } // Result will be stored in a. We return ipiv as an array. VALUE ipiv_array = rb_ary_new2(ipiv_size); for (size_t i = 0; i < ipiv_size; ++i) { rb_ary_store(ipiv_array, i, INT2FIX(ipiv[i])); } return ipiv_array; }
Call any of the clapack_xgetri functions as directly as possible.
You probably don't want to call this function. Instead, why don't you try ::clapack_getri, which is more flexible with its arguments?
This function does almost no type checking. Seriously, be really careful when you call it! There's no exception handling, so you can easily crash Ruby!
Returns an array giving the pivot indices (normally these are argument #5).
static VALUE nm_atlas_clapack_getri(VALUE self, VALUE order, VALUE n, VALUE a, VALUE lda, VALUE ipiv) { #if !defined (HAVE_CLAPACK_H) && !defined (HAVE_ATLAS_CLAPACK_H) rb_raise(rb_eNotImpError, "getri currently requires CLAPACK"); #endif static int (*ttable[nm::NUM_DTYPES])(const enum CBLAS_ORDER, const int n, void* a, const int lda, const int* ipiv) = { NULL, NULL, NULL, NULL, NULL, // integers not allowed due to division nm::math::atlas::clapack_getri<float>, nm::math::atlas::clapack_getri<double>, #if defined (HAVE_CLAPACK_H) || defined (HAVE_ATLAS_CLAPACK_H) clapack_cgetri, clapack_zgetri, // call directly, same function signature! #else // Especially important for Mac OS, which doesn't seem to include the ATLAS clapack interface. nm::math::atlas::clapack_getri<nm::Complex64>, nm::math::atlas::clapack_getri<nm::Complex128>, #endif NULL }; // Allocate the C version of the pivot index array int* ipiv_; if (TYPE(ipiv) != T_ARRAY) { rb_raise(rb_eArgError, "ipiv must be of type Array"); } else { ipiv_ = NM_ALLOCA_N(int, RARRAY_LEN(ipiv)); for (int index = 0; index < RARRAY_LEN(ipiv); ++index) { ipiv_[index] = FIX2INT( RARRAY_PTR(ipiv)[index] ); } } if (!ttable[NM_DTYPE(a)]) { rb_raise(rb_eNotImpError, "this operation not yet implemented for non-BLAS dtypes"); // FIXME: Once non-BLAS dtypes are implemented, replace error above with the error below. //rb_raise(nm_eDataTypeError, "this matrix operation undefined for integer matrices"); } else { // Call either our version of getri or the LAPACK version. ttable[NM_DTYPE(a)](blas_order_sym(order), FIX2INT(n), NM_STORAGE_DENSE(a)->elements, FIX2INT(lda), ipiv_); } return a; }
Call any of the clapack_xgetrs functions as directly as possible.
static VALUE nm_atlas_clapack_getrs(VALUE self, VALUE order, VALUE trans, VALUE n, VALUE nrhs, VALUE a, VALUE lda, VALUE ipiv, VALUE b, VALUE ldb) { static int (*ttable[nm::NUM_DTYPES])(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE Trans, const int N, const int NRHS, const void* A, const int lda, const int* ipiv, void* B, const int ldb) = { NULL, NULL, NULL, NULL, NULL, // integers not allowed due to division nm::math::atlas::clapack_getrs<float>, nm::math::atlas::clapack_getrs<double>, #if defined (HAVE_CLAPACK_H) || defined (HAVE_ATLAS_CLAPACK_H) clapack_cgetrs, clapack_zgetrs, // call directly, same function signature! #else // Especially important for Mac OS, which doesn't seem to include the ATLAS clapack interface. nm::math::atlas::clapack_getrs<nm::Complex64>, nm::math::atlas::clapack_getrs<nm::Complex128>, #endif nm::math::atlas::clapack_getrs<nm::RubyObject> }; // Allocate the C version of the pivot index array int* ipiv_; if (TYPE(ipiv) != T_ARRAY) { rb_raise(rb_eArgError, "ipiv must be of type Array"); } else { ipiv_ = NM_ALLOCA_N(int, RARRAY_LEN(ipiv)); for (int index = 0; index < RARRAY_LEN(ipiv); ++index) { ipiv_[index] = FIX2INT( RARRAY_PTR(ipiv)[index] ); } } if (!ttable[NM_DTYPE(a)]) { rb_raise(nm_eDataTypeError, "this matrix operation undefined for integer matrices"); } else { // Call either our version of getrs or the LAPACK version. ttable[NM_DTYPE(a)](blas_order_sym(order), blas_transpose_sym(trans), FIX2INT(n), FIX2INT(nrhs), NM_STORAGE_DENSE(a)->elements, FIX2INT(lda), ipiv_, NM_STORAGE_DENSE(b)->elements, FIX2INT(ldb)); } // b is both returned and modified directly in the argument list. return b; }
Call any of the clapack_xlaswp functions as directly as possible.
Note that LAPACK's xlaswp functions accept a column-order matrix, but NMatrix uses row-order. Thus, n should be the number of rows and lda should be the number of columns, no matter what it says in the documentation for dlaswp.f.
static VALUE nm_atlas_clapack_laswp(VALUE self, VALUE n, VALUE a, VALUE lda, VALUE k1, VALUE k2, VALUE ipiv, VALUE incx) { //We have actually never used the ATLAS version of laswp. For the time being //I will leave it like that and just always call the internal implementation. //I don't know if there is a good reason for this or not. //Maybe because our internal version swaps columns instead of rows. static void (*ttable[nm::NUM_DTYPES])(const int n, void* a, const int lda, const int k1, const int k2, const int* ipiv, const int incx) = { nm::math::clapack_laswp<uint8_t>, nm::math::clapack_laswp<int8_t>, nm::math::clapack_laswp<int16_t>, nm::math::clapack_laswp<int32_t>, nm::math::clapack_laswp<int64_t>, nm::math::clapack_laswp<float>, nm::math::clapack_laswp<double>, nm::math::clapack_laswp<nm::Complex64>, nm::math::clapack_laswp<nm::Complex128>, nm::math::clapack_laswp<nm::RubyObject> }; // Allocate the C version of the pivot index array int* ipiv_; if (TYPE(ipiv) != T_ARRAY) { rb_raise(rb_eArgError, "ipiv must be of type Array"); } else { ipiv_ = NM_ALLOCA_N(int, RARRAY_LEN(ipiv)); for (int index = 0; index < RARRAY_LEN(ipiv); ++index) { ipiv_[index] = FIX2INT( RARRAY_PTR(ipiv)[index] ); } } // Call either our version of laswp or the LAPACK version. ttable[NM_DTYPE(a)](FIX2INT(n), NM_STORAGE_DENSE(a)->elements, FIX2INT(lda), FIX2INT(k1), FIX2INT(k2), ipiv_, FIX2INT(incx)); // a is both returned and modified directly in the argument list. return a; }
Call any of the clapack_xpotrf functions as directly as possible.
You probably don't want to call this function. Instead, why don't you try ::clapack_potrf, which is more flexible with its arguments?
This function does almost no type checking. Seriously, be really careful when you call it! There's no exception handling, so you can easily crash Ruby!
static VALUE nm_atlas_clapack_potrf(VALUE self, VALUE order, VALUE uplo, VALUE n, VALUE a, VALUE lda) { #if !defined(HAVE_CLAPACK_H) && !defined(HAVE_ATLAS_CLAPACK_H) rb_raise(rb_eNotImpError, "potrf currently requires CLAPACK"); #endif static int (*ttable[nm::NUM_DTYPES])(const enum CBLAS_ORDER, const enum CBLAS_UPLO, const int n, void* a, const int lda) = { NULL, NULL, NULL, NULL, NULL, // integers not allowed due to division nm::math::atlas::clapack_potrf<float>, nm::math::atlas::clapack_potrf<double>, #if defined (HAVE_CLAPACK_H) || defined (HAVE_ATLAS_CLAPACK_H) clapack_cpotrf, clapack_zpotrf, // call directly, same function signature! #else // Especially important for Mac OS, which doesn't seem to include the ATLAS clapack interface. nm::math::atlas::clapack_potrf<nm::Complex64>, nm::math::atlas::clapack_potrf<nm::Complex128>, #endif NULL }; if (!ttable[NM_DTYPE(a)]) { rb_raise(rb_eNotImpError, "this operation not yet implemented for non-BLAS dtypes"); // FIXME: Once BLAS dtypes are implemented, replace error above with the error below. //rb_raise(nm_eDataTypeError, "this matrix operation undefined for integer matrices"); } else { // Call either our version of potrf or the LAPACK version. ttable[NM_DTYPE(a)](blas_order_sym(order), blas_uplo_sym(uplo), FIX2INT(n), NM_STORAGE_DENSE(a)->elements, FIX2INT(lda)); } return a; }
Call any of the clapack_xpotri functions as directly as possible.
You probably don't want to call this function. Instead, why don't you try ::clapack_potri, which is more flexible with its arguments?
This function does almost no type checking. Seriously, be really careful when you call it! There's no exception handling, so you can easily crash Ruby!
static VALUE nm_atlas_clapack_potri(VALUE self, VALUE order, VALUE uplo, VALUE n, VALUE a, VALUE lda) { #if !defined (HAVE_CLAPACK_H) && !defined (HAVE_ATLAS_CLAPACK_H) rb_raise(rb_eNotImpError, "getri currently requires CLAPACK"); #endif static int (*ttable[nm::NUM_DTYPES])(const enum CBLAS_ORDER, const enum CBLAS_UPLO, const int n, void* a, const int lda) = { NULL, NULL, NULL, NULL, NULL, // integers not allowed due to division nm::math::atlas::clapack_potri<float>, nm::math::atlas::clapack_potri<double>, #if defined (HAVE_CLAPACK_H) || defined (HAVE_ATLAS_CLAPACK_H) clapack_cpotri, clapack_zpotri, // call directly, same function signature! #else // Especially important for Mac OS, which doesn't seem to include the ATLAS clapack interface. nm::math::atlas::clapack_potri<nm::Complex64>, nm::math::atlas::clapack_potri<nm::Complex128>, #endif NULL }; if (!ttable[NM_DTYPE(a)]) { rb_raise(rb_eNotImpError, "this operation not yet implemented for non-BLAS dtypes"); // FIXME: Once BLAS dtypes are implemented, replace error above with the error below. //rb_raise(nm_eDataTypeError, "this matrix operation undefined for integer matrices"); } else { // Call either our version of getri or the LAPACK version. ttable[NM_DTYPE(a)](blas_order_sym(order), blas_uplo_sym(uplo), FIX2INT(n), NM_STORAGE_DENSE(a)->elements, FIX2INT(lda)); } return a; }
Call any of the clapack_xpotrs functions as directly as possible.
static VALUE nm_atlas_clapack_potrs(VALUE self, VALUE order, VALUE uplo, VALUE n, VALUE nrhs, VALUE a, VALUE lda, VALUE b, VALUE ldb) { static int (*ttable[nm::NUM_DTYPES])(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const int N, const int NRHS, const void* A, const int lda, void* B, const int ldb) = { NULL, NULL, NULL, NULL, NULL, // integers not allowed due to division nm::math::atlas::clapack_potrs<float>, nm::math::atlas::clapack_potrs<double>, #if defined (HAVE_CLAPACK_H) || defined (HAVE_ATLAS_CLAPACK_H) clapack_cpotrs, clapack_zpotrs, // call directly, same function signature! #else // Especially important for Mac OS, which doesn't seem to include the ATLAS clapack interface. nm::math::atlas::clapack_potrs<nm::Complex64>, nm::math::atlas::clapack_potrs<nm::Complex128>, #endif nm::math::atlas::clapack_potrs<nm::RubyObject> }; if (!ttable[NM_DTYPE(a)]) { rb_raise(nm_eDataTypeError, "this matrix operation undefined for integer matrices"); } else { // Call either our version of potrs or the LAPACK version. ttable[NM_DTYPE(a)](blas_order_sym(order), blas_uplo_sym(uplo), FIX2INT(n), FIX2INT(nrhs), NM_STORAGE_DENSE(a)->elements, FIX2INT(lda), NM_STORAGE_DENSE(b)->elements, FIX2INT(ldb)); } // b is both returned and modified directly in the argument list. return b; }
Function signature conversion for calling CBLAS' geev functions as directly as possible.
GEEV computes for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors.
The right eigenvector v(j) of A satisfies
A * v(j) = lambda(j) * v(j)
where lambda(j) is its eigenvalue.
The left eigenvector u(j) of A satisfies
u(j)**H * A = lambda(j) * u(j)**H
where u(j)**H denotes the conjugate transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.
static VALUE nm_atlas_lapack_geev(VALUE self, VALUE compute_left, VALUE compute_right, VALUE n, VALUE a, VALUE lda, VALUE w, VALUE wi, VALUE vl, VALUE ldvl, VALUE vr, VALUE ldvr, VALUE lwork) { static int (*geev_table[nm::NUM_DTYPES])(char, char, int, void* a, int, void* w, void* wi, void* vl, int, void* vr, int, void* work, int, void* rwork) = { NULL, NULL, NULL, NULL, NULL, // no integer ops nm::math::atlas::lapack_geev<float,float>, nm::math::atlas::lapack_geev<double,double>, nm::math::atlas::lapack_geev<nm::Complex64,float>, nm::math::atlas::lapack_geev<nm::Complex128,double>, NULL // no Ruby objects }; nm::dtype_t dtype = NM_DTYPE(a); if (!geev_table[dtype]) { rb_raise(rb_eNotImpError, "this operation not yet implemented for non-BLAS dtypes"); return Qfalse; } else { int N = FIX2INT(n); char JOBVL = lapack_evd_job_sym(compute_left), JOBVR = lapack_evd_job_sym(compute_right); void* A = NM_STORAGE_DENSE(a)->elements; void* WR = NM_STORAGE_DENSE(w)->elements; void* WI = wi == Qnil ? NULL : NM_STORAGE_DENSE(wi)->elements; void* VL = JOBVL == 'V' ? NM_STORAGE_DENSE(vl)->elements : NULL; void* VR = JOBVR == 'V' ? NM_STORAGE_DENSE(vr)->elements : NULL; // only need rwork for complex matrices (wi == Qnil for complex) int rwork_size = dtype == nm::COMPLEX64 || dtype == nm::COMPLEX128 ? N * DTYPE_SIZES[dtype] : 0; // 2*N*floattype for complex only, otherwise 0 void* rwork = rwork_size > 0 ? NM_ALLOCA_N(char, rwork_size) : NULL; int work_size = FIX2INT(lwork); void* work; int info; // if work size is 0 or -1, query. if (work_size <= 0) { work_size = -1; work = NM_ALLOC_N(char, DTYPE_SIZES[dtype]); //2*N * DTYPE_SIZES[dtype]); info = geev_table[dtype](JOBVL, JOBVR, N, A, FIX2INT(lda), WR, WI, VL, FIX2INT(ldvl), VR, FIX2INT(ldvr), work, work_size, rwork); work_size = (int)(dtype == nm::COMPLEX64 || dtype == nm::FLOAT32 ? reinterpret_cast<float*>(work)[0] : reinterpret_cast<double*>(work)[0]); // line above is basically: work_size = (int)(work[0]); // now have new work_size NM_FREE(work); if (info == 0) rb_warn("geev: calculated optimal lwork of %d; to eliminate this message, use a positive value for lwork (at least 2*shape[i])", work_size); else return INT2FIX(info); // error of some kind on query! } // if work size is < 2*N, just set it to 2*N if (work_size < 2*N) work_size = 2*N; if (work_size < 3*N && (dtype == nm::FLOAT32 || dtype == nm::FLOAT64)) { work_size = JOBVL == 'V' || JOBVR == 'V' ? 4*N : 3*N; } // Allocate work array for actual run work = NM_ALLOCA_N(char, work_size * DTYPE_SIZES[dtype]); // Perform the actual calculation. info = geev_table[dtype](JOBVL, JOBVR, N, A, FIX2INT(lda), WR, WI, VL, FIX2INT(ldvl), VR, FIX2INT(ldvr), work, work_size, rwork); return INT2FIX(info); } }
Function signature conversion for calling CBLAS' gesdd functions as directly as possible.
xGESDD uses a divide-and-conquer strategy to compute the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors. The SVD is written
A = U * SIGMA * transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA are the singular values of A; they are real and non-negative, and are returned in descending order. The first min(m,n) columns of U and V are the left and right singular vectors of A.
Note that the routine returns V**T, not V.
static VALUE nm_atlas_lapack_gesdd(VALUE self, VALUE jobz, VALUE m, VALUE n, VALUE a, VALUE lda, VALUE s, VALUE u, VALUE ldu, VALUE vt, VALUE ldvt, VALUE lwork) { static int (*gesdd_table[nm::NUM_DTYPES])(char, int, int, void* a, int, void* s, void* u, int, void* vt, int, void* work, int, int* iwork, void* rwork) = { NULL, NULL, NULL, NULL, NULL, // no integer ops nm::math::atlas::lapack_gesdd<float,float>, nm::math::atlas::lapack_gesdd<double,double>, nm::math::atlas::lapack_gesdd<nm::Complex64,float>, nm::math::atlas::lapack_gesdd<nm::Complex128,double>, NULL // no Ruby objects }; nm::dtype_t dtype = NM_DTYPE(a); if (!gesdd_table[dtype]) { rb_raise(rb_eNotImpError, "this operation not yet implemented for non-BLAS dtypes"); return Qfalse; } else { int M = FIX2INT(m), N = FIX2INT(n); int min_mn = NM_MIN(M,N); int max_mn = NM_MAX(M,N); char JOBZ = lapack_svd_job_sym(jobz); // only need rwork for complex matrices void* rwork = NULL; int work_size = FIX2INT(lwork); // Make sure we allocate enough work, regardless of the user request. if (dtype == nm::COMPLEX64 || dtype == nm::COMPLEX128) { int rwork_size = min_mn * (JOBZ == 'N' ? 5 : NM_MAX(5*min_mn + 7, 2*max_mn + 2*min_mn + 1)); rwork = NM_ALLOCA_N(char, DTYPE_SIZES[dtype] * rwork_size); if (JOBZ == 'N') work_size = NM_MAX(work_size, 3*min_mn + NM_MAX(max_mn, 6*min_mn)); else if (JOBZ == 'O') work_size = NM_MAX(work_size, 3*min_mn*min_mn + NM_MAX(max_mn, 5*min_mn*min_mn + 4*min_mn)); else work_size = NM_MAX(work_size, 3*min_mn*min_mn + NM_MAX(max_mn, 4*min_mn*min_mn + 4*min_mn)); } else { if (JOBZ == 'N') work_size = NM_MAX(work_size, 2*min_mn + max_mn); else if (JOBZ == 'O') work_size = NM_MAX(work_size, 2*min_mn*min_mn + max_mn + 2*min_mn); else work_size = NM_MAX(work_size, min_mn*min_mn + max_mn + 2*min_mn); } void* work = NM_ALLOCA_N(char, DTYPE_SIZES[dtype] * work_size); int* iwork = NM_ALLOCA_N(int, 8*min_mn); int info = gesdd_table[dtype](JOBZ, M, N, NM_STORAGE_DENSE(a)->elements, FIX2INT(lda), NM_STORAGE_DENSE(s)->elements, NM_STORAGE_DENSE(u)->elements, FIX2INT(ldu), NM_STORAGE_DENSE(vt)->elements, FIX2INT(ldvt), work, work_size, iwork, rwork); return INT2FIX(info); } }
Function signature conversion for calling CBLAS' gesvd functions as directly as possible.
xGESVD computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and/or right singular vectors. The SVD is written
A = U * SIGMA * transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA are the singular values of A; they are real and non-negative, and are returned in descending order. The first min(m,n) columns of U and V are the left and right singular vectors of A.
Note that the routine returns V**T, not V.
static VALUE nm_atlas_lapack_gesvd(VALUE self, VALUE jobu, VALUE jobvt, VALUE m, VALUE n, VALUE a, VALUE lda, VALUE s, VALUE u, VALUE ldu, VALUE vt, VALUE ldvt, VALUE lwork) { static int (*gesvd_table[nm::NUM_DTYPES])(char, char, int, int, void* a, int, void* s, void* u, int, void* vt, int, void* work, int, void* rwork) = { NULL, NULL, NULL, NULL, NULL, // no integer ops nm::math::atlas::lapack_gesvd<float,float>, nm::math::atlas::lapack_gesvd<double,double>, nm::math::atlas::lapack_gesvd<nm::Complex64,float>, nm::math::atlas::lapack_gesvd<nm::Complex128,double>, NULL // no Ruby objects }; nm::dtype_t dtype = NM_DTYPE(a); if (!gesvd_table[dtype]) { rb_raise(rb_eNotImpError, "this operation not yet implemented for non-BLAS dtypes"); return Qfalse; } else { int M = FIX2INT(m), N = FIX2INT(n); int min_mn = NM_MIN(M,N); int max_mn = NM_MAX(M,N); char JOBU = lapack_svd_job_sym(jobu), JOBVT = lapack_svd_job_sym(jobvt); // only need rwork for complex matrices int rwork_size = (dtype == nm::COMPLEX64 || dtype == nm::COMPLEX128) ? 5 * min_mn : 0; void* rwork = rwork_size > 0 ? NM_ALLOCA_N(char, DTYPE_SIZES[dtype] * rwork_size) : NULL; int work_size = FIX2INT(lwork); // ignore user argument for lwork if it's too small. work_size = NM_MAX((dtype == nm::COMPLEX64 || dtype == nm::COMPLEX128 ? 2 * min_mn + max_mn : NM_MAX(3*min_mn + max_mn, 5*min_mn)), work_size); void* work = NM_ALLOCA_N(char, DTYPE_SIZES[dtype] * work_size); int info = gesvd_table[dtype](JOBU, JOBVT, M, N, NM_STORAGE_DENSE(a)->elements, FIX2INT(lda), NM_STORAGE_DENSE(s)->elements, NM_STORAGE_DENSE(u)->elements, FIX2INT(ldu), NM_STORAGE_DENSE(vt)->elements, FIX2INT(ldvt), work, work_size, rwork); return INT2FIX(info); } }