module NMatrix::BLAS
Public Class Methods
Calculate the sum of absolute values of the entries of a vector
x
of size n
-
Arguments :
-
Returns :
-
The sum
-
-
Raises :
-
ArgumentError
-> Expected dense NMatrix for arg 0 -
RangeError
-> n out of range
-
# File lib/nmatrix/blas.rb, line 260 def asum(x, incx = 1, n = nil) n ||= x.size / incx raise(ArgumentError, "Expected dense NMatrix for arg 0") unless x.is_a?(NMatrix) raise(RangeError, "n out of range") if n*incx > x.size || n*incx <= 0 || n <= 0 ::NMatrix::BLAS.cblas_asum(n, x, incx) end
# File lib/nmatrix/blas.rb, line 301 def cblas_herk(order, uplo, trans, n, k, alpha, a, lda, beta, c, ldc) raise(NotImplementedError,"cblas_herk requires either the nmatrix-lapacke or nmatrix-atlas gem") end
# File lib/nmatrix/blas.rb, line 297 def cblas_syrk(order, uplo, trans, n, k, alpha, a, lda, beta, c, ldc) raise(NotImplementedError,"cblas_syrk requires either the nmatrix-lapacke or nmatrix-atlas gem") end
The following are functions that used to be implemented in C, but now require nmatrix-atlas or nmatrix-lapcke to run properly, so we can just implemented their stubs in Ruby.
# File lib/nmatrix/blas.rb, line 293 def cblas_trmm(order, side, uplo, trans_a, diag, m, n, alpha, a, lda, b, ldb) raise(NotImplementedError,"cblas_trmm requires either the nmatrix-lapacke or nmatrix-atlas gem") end
Updates the value of C via the matrix multiplication
C = (alpha * A * B) + (beta * C)
where alpha
and beta
are scalar values.
-
Arguments :
-
a
-> Matrix A. -
b
-> Matrix B. -
c
-> Matrix C. -
alpha
-> A scalar value that multiplies A * B. -
beta
-> A scalar value that multiplies C. -
transpose_a
-> -
transpose_b
-> -
m
-> -
n
-> -
k
-> -
lda
-> -
ldb
-> -
ldc
->
-
-
Returns :
-
A NMatrix equal to (alpha * A * B) + (beta * C).
-
-
Raises :
-
ArgumentError
->a
andb
must be dense matrices. -
ArgumentError
->c
must benil
or a dense matrix. -
ArgumentError
-> The dtype of the matrices must be equal.
-
# File lib/nmatrix/blas.rb, line 71 def gemm(a, b, c = nil, alpha = 1.0, beta = 0.0, transpose_a = false, transpose_b = false, m = nil, n = nil, k = nil, lda = nil, ldb = nil, ldc = nil) raise(ArgumentError, 'Expected dense NMatrices as first two arguments.') unless a.is_a?(NMatrix) and b.is_a?(NMatrix) and a.stype == :dense and b.stype == :dense raise(ArgumentError, 'Expected nil or dense NMatrix as third argument.') unless c.nil? or (c.is_a?(NMatrix) and c.stype == :dense) raise(ArgumentError, 'NMatrix dtype mismatch.') unless a.dtype == b.dtype and (c ? a.dtype == c.dtype : true) # First, set m, n, and k, which depend on whether we're taking the # transpose of a and b. if c m ||= c.shape[0] n ||= c.shape[1] k ||= transpose_a ? a.shape[0] : a.shape[1] else if transpose_a # Either :transpose or :complex_conjugate. m ||= a.shape[1] k ||= a.shape[0] else # No transpose. m ||= a.shape[0] k ||= a.shape[1] end n ||= transpose_b ? b.shape[0] : b.shape[1] c = NMatrix.new([m, n], dtype: a.dtype) end # I think these are independent of whether or not a transpose occurs. lda ||= a.shape[1] ldb ||= b.shape[1] ldc ||= c.shape[1] # NM_COMPLEX64 and NM_COMPLEX128 both require complex alpha and beta. if a.dtype == :complex64 or a.dtype == :complex128 alpha = Complex(1.0, 0.0) if alpha == 1.0 beta = Complex(0.0, 0.0) if beta == 0.0 end # For argument descriptions, see: http://www.netlib.org/blas/dgemm.f ::NMatrix::BLAS.cblas_gemm(:row, transpose_a, transpose_b, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc) return c end
Implements matrix-vector product via
y = (alpha * A * x) + (beta * y)
where alpha
and beta
are scalar values.
-
Arguments :
-
a
-> Matrix A. -
x
-> Vector x. -
y
-> Vector y. -
alpha
-> A scalar value that multiplies A * x. -
beta
-> A scalar value that multiplies y. -
transpose_a
-> -
m
-> -
n
-> -
lda
-> -
incx
-> -
incy
->
-
-
Returns : -
-
Raises :
-
++ ->
-
# File lib/nmatrix/blas.rb, line 143 def gemv(a, x, y = nil, alpha = 1.0, beta = 0.0, transpose_a = false, m = nil, n = nil, lda = nil, incx = nil, incy = nil) raise(ArgumentError, 'Expected dense NMatrices as first two arguments.') unless a.is_a?(NMatrix) and x.is_a?(NMatrix) and a.stype == :dense and x.stype == :dense raise(ArgumentError, 'Expected nil or dense NMatrix as third argument.') unless y.nil? or (y.is_a?(NMatrix) and y.stype == :dense) raise(ArgumentError, 'NMatrix dtype mismatch.') unless a.dtype == x.dtype and (y ? a.dtype == y.dtype : true) m ||= transpose_a == :transpose ? a.shape[1] : a.shape[0] n ||= transpose_a == :transpose ? a.shape[0] : a.shape[1] raise(ArgumentError, "dimensions don't match") unless x.shape[0] == n && x.shape[1] == 1 if y raise(ArgumentError, "dimensions don't match") unless y.shape[0] == m && y.shape[1] == 1 else y = NMatrix.new([m,1], dtype: a.dtype) end lda ||= a.shape[1] incx ||= 1 incy ||= 1 ::NMatrix::BLAS.cblas_gemv(transpose_a, m, n, alpha, a, lda, x, incx, beta, y, incy) return y end
Calculate the 2-norm of a vector x
of size n
-
Arguments :
-
Returns :
-
The 2-norm
-
-
Raises :
-
ArgumentError
-> Expected dense NMatrix for arg 0 -
RangeError
-> n out of range
-
# File lib/nmatrix/blas.rb, line 283 def nrm2(x, incx = 1, n = nil) n ||= x.size / incx raise(ArgumentError, "Expected dense NMatrix for arg 0") unless x.is_a?(NMatrix) raise(RangeError, "n out of range") if n*incx > x.size || n*incx <= 0 || n <= 0 ::NMatrix::BLAS.cblas_nrm2(n, x, incx) end
Apply plane rotation.
-
Arguments :
-
x
-> NMatrix -
y
-> NMatrix -
c
-> cosine of the angle of rotation -
s
-> sine of the angle of rotation -
incx
-> stride of NMatrixx
-
incy
-> stride of NMatrixy
-
n
-> number of elements to consider in x and y -
in_place
-> true if it's okay to modify the suppliedx
andy
parameters directly; false if not. Default is false.
-
-
Returns :
-
Array with the results, in the format [xx, yy]
-
-
Raises :
-
ArgumentError
-> Expected dense NMatrices as first two arguments. -
ArgumentError
-> NMatrix dtype mismatch. -
ArgumentError
-> Need to supply n for non-standard incx, incy values.
-
# File lib/nmatrix/blas.rb, line 189 def rot(x, y, c, s, incx = 1, incy = 1, n = nil, in_place=false) raise(ArgumentError, 'Expected dense NMatrices as first two arguments.') unless x.is_a?(NMatrix) and y.is_a?(NMatrix) and x.stype == :dense and y.stype == :dense raise(ArgumentError, 'NMatrix dtype mismatch.') unless x.dtype == y.dtype raise(ArgumentError, 'Need to supply n for non-standard incx, incy values') if n.nil? && incx != 1 && incx != -1 && incy != 1 && incy != -1 n ||= [x.size/incx.abs, y.size/incy.abs].min if in_place ::NMatrix::BLAS.cblas_rot(n, x, incx, y, incy, c, s) return [x,y] else xx = x.clone yy = y.clone ::NMatrix::BLAS.cblas_rot(n, xx, incx, yy, incy, c, s) return [xx,yy] end end
Apply plane rotation directly to x
and y
.
See rot for arguments.
# File lib/nmatrix/blas.rb, line 217 def rot!(x, y, c, s, incx = 1, incy = 1, n = nil) rot(x,y,c,s,incx,incy,n,true) end
Apply givens plane rotation to the coordinates (a,b), returning the cosine and sine of the angle theta.
Since the givens rotation includes a square root, integers are disallowed.
-
Arguments :
-
ab
-> NMatrix with two elements
-
-
Returns :
-
Array with the results, in the format [cos(theta), sin(theta)]
-
-
Raises :
-
ArgumentError
-> Expected dense NMatrix of size 2
-
# File lib/nmatrix/blas.rb, line 237 def rotg(ab) raise(ArgumentError, "Expected dense NMatrix of shape [2,1] or [1,2]") unless ab.is_a?(NMatrix) && ab.stype == :dense && ab.size == 2 ::NMatrix::BLAS.cblas_rotg(ab) end